
College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 1

E 1

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 2

Structures

A structure is a collection of simple variables. The variables in a structure can

be of different types: Some can be int, some can be float, and so on. (This is

unlike the array, which we’ll meet later, in which all the variables must be the

same type.) The data items in a structure are called the members of the structure.

However, for C++ programmers, structures are one of the two important

building blocks in the understanding of objects and classes. In fact, the syntax

of a structure is almost identical to that of a class. A structure (as typically used)

is a collection of data, while a class is a collection of both data and functions. So

by learning about structures we will be paving the way for an understanding of

classes and objects. Structures in C++ (and C) serve a similar purpose to

records in some other languages such as Pascal.

A Simple Structure

Let’s start off with a structure that contains three variables: two integers and a

floating-point number.

Overview of OOP

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 3

Bjarne Stroustrup at Bell Labs developed C++ during 1985. The term C++ was

first used in 1983. Prior to 1983, Stroustrup added features to C programming

language and formed what he called “C with Classes”. In addition to the

efficiency and portability of C, C++ provides number of new features. C++

programming language is basically an extension of C programming language.

The fashion of the 1990s is most definitely object-oriented programming.

Basic concepts of Object-Oriented Programming:

It is necessary to understand some of the concepts used extensively in object-

oriented programming. These include:

1. Classes

2. Objects

3. Encapsulation and Data Hiding.

4. Data Abstraction

5. Inheritance and Reuse.

6. Polymorphism.

1. Class Definition:

Class is a keyword, whose functionality is similar to that of the struct keyword,

but with the possibility of including functions as members, instead of only data.

Classes are collections of variables and functions that operate on those

variables. The variables in a class definition are called data members, and the

functions are called member functions.

A class specification has two parts:

 Class declaration: It describes the type and scope it its members. The

class declaration is similar to a struct declaration

 Class function definitions: It describes how the class functions are

implemented.

The variables declared inside the class are known as data members and the

functions are known as member functions.

A typical class declaration would look like:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 4

Class members fall under one of three different access permission categories:

Public members are accessible by all class users.

Private members are only accessible by the class members. By default,

the members of a class are private.

Protected members are only accessible by the class members and the

members of a derived class.

Note:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 5

Only the member functions can have access to the private data members and

private functions. However, the public members (both functions and data) can

be accessed from outside the class.

Figure 3: Data binding in classes

2. Objects

The core of the pure object-oriented programming is to create an object, in

code, that has certain properties and methods. Objects are the basic run-time

entities in an object-oriented system. They may be present a person, a place, a

bank account, or any item that the program has to handle.

In fact, objects are variables of the type class, once a class has been defined,

we can create any number of objects belong to that class. Each object is

associated with the data of type class with which they are created.

A Simple Class Example:

class item

{

int number; // variables declaration

float cost; //private by default

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 6

public:

void getdata(int a, float b) //functions declaration

void putdata(void) //using prototype

};

Creating Object

Once a class has been declared, we can create variables of that type by using the

class name (like other built-in- type variable). For example:

item x; // memory for x is created

creates a variable x of type item. The class variables are known as objects.

Therefore x is called an object of type item.

We may also define more than object in one statement. Example:

item x,y,z;

The necessary memory space is allocated to an object at this stage.

Accessing Class members

The private data of a class can be accessed only through the member functions

of that class. The main () cannot contain statements that access number and

cost directly. The following is the format for calling a member function:

Object-name. function-name(actual-arguments);

For example, the function call statement

 x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by

implementing the getdata() function. Remember, a member function can be invoked

only by using an object (of the same class). The statement

x.number=100; is also illegal.

A variable declared as public can be accessed by the objects directly. Example:

class xyz

{

int x;

int y;

public:

int z;

};

…….

xyz p;

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 7

p.x=0; // error, x is private

p.z=10; // OK, z is public

…….

Note that the use of data in this manner defeats the very idea of data hiding and therefore

should be avoided.

Defining Member Functions
Member functions can be defined in two places:

• Inside the class definition.

• Outside the class definition.

It is obvious that, irrespective of the place of definition, the function should

perform the same task. Therefore, the code for the function body would be

identical in both the cases. However, there is a subtle different in the way the

function header is defined.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 8

 Inside the Class Definition

The method of defining a member function is to replace the function declaration

by the actual function definition inside the class. Normally, only small functions

are defined inside the class definition. For example:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 9

 Outside the Class Definition

Member functions that are declared inside a class have to be defined separately

outside the class. Their definitions are very much like the normal functions.

They should have a function header and a function body. The general form of a

member function definition is:

return‐type class‐name : : function‐name (argument declaration)

{

Function body

}

The membership label class‐name : : tells the compiler that the function

function‐name belongs to the class class‐name. That is, the scope of the function

is restricted to the class‐name specified in the header line. The symbol : : is

called the scope resolution operator.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 10

One of the objectives of OOP is to separate the details of implementation from

the class definition. It is therefore good practice to define the member functions

outside the class.

For instance, consider the member functions getdata() and putdata(). They

may be coded as follows:

class item

{

int number;

float cost;

public:

void getdata(int a, float); // function declaration

};

void item: : getdata(int a, float b) // function definition

{

number = a;

cost = b;

}

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 11

The program shows that:

 The member functions can have direct access to private data items.

 The member function putdata() has been defined inside the class and

therefore behaves like an inline function.

 The program creates two object x and y in two different statements. This can

be combined in one statement.

3. Encapsulation and Data hiding

The binding of data and functions together into a single class-type variable is

referred to as encapsulation.

Data hiding is the highly valued characteristic that an object can be used

without the user knowing or caring how it works internally. C++ supports the

properties of encapsulation and data hiding through the creation of user-defined

types, called classes.

4. Data Abstraction

Abstraction refers to the act of representing essential features without including

the background details or explanations. Classes use the concept of abstraction

and are defined as a list of abstract attributes such as size, weight and cost, and

functions to operate on these attributes.

The attributes are sometimes called data members because they hold

information. The functions that operate on these data are sometimes called

methods or member functions.

5. Inheritance

Inheritance is the process by which objects of one class acquire the properties of

objects of another class. In OOP, the concept of Inheritance provides the idea of

reusability. This means that we can add additional features to an existing class

without modifying it.

6. Polymorphism

Polymorphism, in a Greek term, means the ability to take more than one form

(Poly means many, and morph means form). Polymorphism refers to the same

name taking many forms. Using a single function name to perform different

types of tasks is known as function overloading.

 Nesting of Member Functions

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 12

We discussed that a member function of a class can be called by an object of that class using

a dot operator. However, there is an exception to this. A member function can be called by

using its name inside another member function of the same class. This is known as nesting

of member functions. The following program illustrates the concept of nesting member

functions.

The above program shows the greatest number among two numbers.

Output:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 13

 Private Member Function

A private member function can only be called by another function that is a member of its

class. Even an object cannot invoke a private function using the dot operator. Consider a

class as defined below:

Class Sample

{

int m;

void read (void);

public:

void update (void);

void write (void);

};

If s1 is an object of sample, then

S1.read (); //wont work; object cannot access because its private member

function

is illegal, however, the function read () can be called by the function update () to update the

value of m.

void sample :: update (void)

{

read ();

}

 Static Data Members

A static member variable has certain special characteristics. These are:

1. It is initialized to zero when the first object of its class is created.

2. Only one copy of that member is created for the entire class and is shared by all the

objects of that class. No matter how many objects are created.

3. It is visible only within the class, but its lifetime in the entire program.

A static data member can be used as a counter that records the occurrences of all the objects.

The following program illustrates the use of static data member.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 14

The output of the program would be:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 15

 Static Member Functions

Like static member variable, we can also have static member functions. A member

function that is declared static has the following properties:

1. A static function can have access to only other static members (functions or

variables) declared in the same class.

2. A static member function can be called using the class name (instead of its objects)

as follows:

class-name :: function-name;

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 16

The output of the program would be:

 Note:

 The statement (code = ++count) is executed whenever the function setcode() is

invoked and the current value of count is assigned to code. Since each object has its

own copy of code, the value contained in code represents a unique number of its

object.

 The static function showcount () displays the number of objects created till that

moment. A count of number of objects created is maintained by the static variable

count.

 The function showcode () displays the code number of each object.

Remember, the following function definition will not work:

Static void showcount ()

{

 cout<<code; // code is not static

}

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 17

1. Friend Functions

 What is a Friend Function?

A friend function is used for accessing the non-public members of a class. A class can allow

non-member functions and other classes to access its own private data, by making them friends.

Thus, a friend function is an ordinary function or a member of another class.

 Need for Friend Function

When a data is declared as private inside a class, then it is not accessible from outside the class.

A function that is not a member or an external class will not be able to access the private data.

We may have situations where we would need to access private data from non-member

functions and external classes. For handling such cases, the concept of Friend functions is a

useful.

 How to define and use Friend Function

The friend function is written as any other normal function, except the function declaration of

these functions is preceded with the keyword friend. To make an outside function "friendly" to

class, we have to simply declare this function as a friend of the class as shown below:

 A friend function has certain special characteristics

 The keyword friend is placed only in the function declaration of the friend function and not in

the function definition.

 It is possible to declare a function as friend in any number of classes.

 A friend function, even though it is not a member function, would have the rights to access the

private members of the class.

 It is possible to declare the friend function as either private or public.

 The function can be invoked without the use of an object. The friend function has its argument

as objects.

 Unlike member functions, it cannot access the member names directly and has to use an object

name and dot operator with each member name. (e.g. A.x).

The following program illustrates the mean value of any two numbers by using friend

function.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 18

 The output of the program would be:

The program below demonstrates how friend functions work as a bridge between the classes.

Note that the function max () has arguments from both XYZ and ABC. When the function max

() is declared as a friend in XYZ, for the first time, the compiler will not acknowledge the

presence of ABC under its name is declared in the beginning as class ABC;

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 19

2. Friend Class

It is also possible to make an entire class a friend of another class. This gives complete access to

all its data and methods including private and protected data and methods to the friend class

member methods. Friendship is one way only, which means if A declares B as its friend it does

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 20

NOT mean that A can access private data of B. It only means that B can access all data of A.

The class is called a friend class. This can be specified as follows:

The following program illustrates the maximum value of any two numbers by using friend

class.

 The output of the program would be:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 21

 The below program represents a friend class to class point:

The output of the program would be:

xval=12

yval=5

Note: The display class is a friend of point class, any of Display’s members that use a point

class object can access the private members of point directly.

 What is the different between Friend Function and Friend Class?

 Friend function
 The friend keyword is used for declaration.

 While writing definition of function, the friend keyword is not required.

 Through a friend function, we can allow outside functions to access the class members.

 Friend class
 For the declaration of a friend class, the friend keyword is used: friend class a;

 While writing a class, the friend keyword is not required.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 22

 With a friend class we can access the members of one class into another.

 What is different between friend function and member function in C++?

 A member function is the one which is defined inside a class and is a member of the class. It

may either be a public private or protected function.

 We use friend function in the case when we want to one class to communicate with other

class. For this we need to declare that friend function in both the classes and define that friend

function outside the associated classes. The friend function is always capable to access all the

members of the associated classes.

 The major difference is that a friend function is called like f(x), while a member function is

called like x.f(). Thus the ability to choose between member functions (x.f()) and friend

functions (f(x)) allows a designer to select the syntax that is deemed most readable, which

lowers maintenance costs.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 23

Class Constructors and Destructors

3. Introduction

A constructor is a special member function that is executed automatically whenever we

create new objects of that class. It is special because its name is the same name as the class

name. The main purpose of a class constructor is to perform any initializations related to

the class instances via passing of some parameter values as initial values and allocate

proper memory locations for that object.

Characteristics of Constructors

 They should be declared in the public section

 They are automatically invoked and have no return types, neither can they

return values

 They cannot be virtual nor can we refer to their addresses & they can have

default arguments

 They make implicit calls to new and delete

General Syntax of declaration and definition of constructor as follows:

class interger

{

int m, n;

public:

integer (); //constructor declared

……..

};

integer :: integer () //constructor defined

{

……….

}

Types of constructors

A. Default constructor:- Default Constructor is also called as Empty Constructor

which has no arguments and It is Automatically called when we creates the object

of class but Remember name of Constructor is same as name of class and

Constructor never declared with the help of return type. When the class contains

the default constructor like in above example integer (). It is guaranteed that an

object created by the class will be initialized automatically. For example,

integer int1 // object int1 created

 Example 1: WAP to add two numbers by using default constructor.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 24

B. Parameterized Constructor: - This is another type of constructor which has some

Arguments and same name as class name but it uses some arguments. For this type

we have to create object of class by passing some arguments at the time of creating

object with the name of class. When we pass some Arguments to the constructor

then this will automatically pass the arguments to the constructor and the values

will retrieve by the respective data members of the class.

class interger

{

int m, n;

public:

integer (int x, int y); // Parameterized constructor declared

……..

};

integer :: integer (int x, int y) // Parameterized constructor defined

{

m=x;

n=y;}

When a constructor has been parameterized, the object declaration statement such

as

integer int1 //may not work.

We must pass the initial values as arguments to the constructor function when an

object is declared. This can be done in two ways:

1. By calling the constructor explicitly.

integer int1= integer (0,100); //explicit call

the statement creates an integer object called int1 and passes the values 0

and 100 to it.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 25

2. By calling the constructor implicitly.

integer int1 (0,100); //implicit call
This method sometimes called the shorthand method because is used very

often as it is shorter, looks better and is easy to implement.

Note:

1. The parameters of a constructor can be of any type except that of the class to

which it belongs. For example:

class A

{

int m, n;

public:

A (A); // is illegal

};

2. A constructor can accept a reference to its own class as a parameter. Thus, the

statement

class A

{

int m, n;

public:

A (A&); // is legal which can called (copy constructor)

};

Example 2: WAP to find the area of the rectangle by using parameterized

constructor.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 26

C. Copy Constructor:- A constructor that initializes an object using values of

another object passed to it as parameter, is called copy constructor. It creates

the copy of the passed object.

 class interger

{

int m, n;

public:

integer (integer & i) // Copy constructor

{

m=i.m; n=i.n;}

};

When a copy constructor has been declared and defined, the object declaration

statement such as:

integer int1(int2);

Would define the object int1 and the same time initialize it to the values of int2.

Another of this statement is

integer int1= int2;

Note:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 27

 The process of initializing through a copy constructor is called copy

initialization

 A copy constructor takes a reference to an object of the same class as itself.

 int1=int2 will copy member by member but does not call the copy constructor.

 We cannot pass by value to a copy constructor.

Since we discussed that there are three kinds of constructors (Default, Parameterized,

and Copy Constructor). We can have multiple constructors in one class. We learned

that the process of sharing the same name by two or more functions is referred to as

function overloading. Similarly, when more than one constructor function is defined

in class, we say that the constructor is overloaded.

Example3: WAP to display the student’s ID number and marks by using multiple

constructors. Assume that the first student has any ID number with any marks, the

second student has ID number 5 and the marks 78 and the third student has the

same ID number and marks of second student.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 28

4. Destructor

A destructor is used to clean up the object just before it is destroyed. A destructor always

has the same name as the class itself, but is preceded with a ~ symbol. Unlike constructors, a

class may have at most one destructor. A destructor never takes any arguments and has no

explicit return type.

~ student () { } // destructor declaration

Student :: ~student () //destructor definition outside the class
{ }

Destructors have specific naming rules:

1) The destructor must have the same name as the class, preceded by a tilde (~).

2) The destructor cannot take arguments.

3) The destructor has no return type.

Example 4: WAP to represent the destructor in rectangle class.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 29

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 30

Inheritance: Extending Classes

5. Introduction

Inheritance is probably the most powerful feature of object-oriented programming after classes

themselves. Inheritance is the process of creating new classes, called derived classes, from

existing or base classes. The derived class inherits all the capabilities of the base class.

Inheritance is an essential part of OOP. Its big payoff is that it permits code reusability. Once a

base class is written and debugged, it need not be touched again, but, using inheritance can

nevertheless be adapted to work in different situations. Reusing existing code saves time and

money and increases a program’s reliability.

An important result of reusability is the ease of distributing class libraries. A programmer can

use a class created by another person or company, and, without modifying it, derive other

classes from it that are suited to particular situations.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 31

Different Forms of Inheritance

The mechanism of deriving a new class from an old one is called inheritance (or derivation).

The old class is referred to as the base class and new one is called the derived class. There are

various forms of inheritance.

 Single inheritance: A derived class with only one base class is called single inheritance.

 Multiple inheritance: A derived class with several base classes is called multiple inheritance.

 Multilevel inheritance: The mechanism of deriving a class from another derived class is

called multilevel inheritance.

 Hierarchical inheritance: One class may be inherited by more than one class. This process is

known as hierarchical inheritance.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 32

 Hybrid inheritance: It is a combination of hierarchical and multiple inheritance.

Defining Derived Class
A derived class is defined by specifying its relationship with the base class using visibility

mode.

The general form of defining a derived class is:

The colon indicates that the derived_class is derived (inherits some property) from base_class.

The visibility-mode can be either private or public or protected. If no visibility mode is

specified, then by default the visibility mode is considered as private.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 33

Important Notes:

1. When a base class is public inherited derived class, public members of the base class

become ‘public members’ of the derived class and therefore they are accessible to the

objects of the derived class.

2. When a base class is privately inherited by a derived class ,’public members of the base

class become ‘private members’ of the derived class and therefore the public members of

the base class can only be accessed by the member function of the derived class. They are

inaccessible to the objects of the derived class.

3. In both cases, the private members of a base class are not inherited to the derived class.

4. In inheritance, some of the base class data elements and members functions are “inherited

“into the derived class, we can add our own data and members functions and thus extend

the functionality of the base class.

A. Single Inheritance:

Let us consider a simple example to illustrates inheritance. The following program shows a

base class B and a derived class D. The class B contains one private data member, one

public data member, and three public functions. The class D contains one private data

member and two public member functions.

Example 1 (public Derivation)

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 34

The output of the program is:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 35

Example 2 (Private Derivation)

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 36

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 37

 Access Members with Different Visibility Modes

As we know in C++, there are three access modifiers namely, public, private and

protected. The private members of the base class cannot inherit therefore it is not

available for the derived class directly. The protected members of the base class can

accessible with in its class and any class immediately derived from it. It cannot be

accessed by any methods that are outside of these two classes i.e. methods do not

belongs to these two classes.

A class can now use all three visibility modifiers as shown below:

Class A

{

Private :

// members visible only to this class member functions

Protected:

// members visible to this class member functions and also for its derived

// class member functions.

Public:

// visible to all functions in the program.

};

 When a protected member is inherited in public mode, it becomes protected in its

derived class therefore this members can accessible by member functions of the

derived class.

 When a protected member is inherited in private mode, it becomes private in its

derived class therefore these members can accessible only by this class member

functions, it is not available for further inheritance since private members cannot

inherited.

The following table illustrates how visibility of base class members will undergo

modifications in all the three kinds of derivation.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 38

2. Multilevel inheritance

When you define more than two levels of inheritance (in the form of a chain of

classes), it would be generally referred to as multi-level inheritance. In the case of

multi-level inheritance, all the members of all super classes would be automatically

available within the sub class.

Now we see how multi-Level inheritance should implement through this syntax.

Syntax:

Class base_class_name1
{
// List of members
};
Class derived_base_name2 : <visibility mode> base_class_name1
{
// List of members
};
Class derived : <visibility mode> derived_base_name2
{
// List of members
};

As you seen the syntax above clearly shows how to implement the multi-Level

inheritance through programming.

Example 1:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 39

Assume that the test results of a batch of students are stored in three different classes.

Class A stores the roll number, class B stores the marks obtained in two subjects and

class C contains the total marks obtained in the test. The class C can inherit the details

of the marks obtained in the test and the roll number of students through multi-level

inheritance.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 40

3. Multiple Inheritance

Multiple inheritance refers to a feature in which a class can inherit behaviors and

features from more than one superclass (base class). This contrasts with single

inheritance, where a class may inherit from only one superclass.

Only few Object Oriented Programming Languages supports Multiple Inhritance

because of some Ambiguities arise in multiple inheritance.

Languages that mostly support multiple inheritance are: Eiffel, C++, Python, Perl, and

CLOS. Java and C# do not allow multiple inheritance; this results in no ambiguity.

However, Java and C# allow classes to inherit from multiple interfaces.

The class hierarchy shown below represents Multiple Inheritance.

Syntax:
Class base_class_name1
{
// List of members

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 41

};
Class base_class_name2
{
// List of members
};
Class derived: <visibility mode> base_class_name1, < visibility mode>
base_class_name2
{
// List of members
};

Note:

In programming, when a new class is derived from two or more base classes Then

after Colon Symbol all base class names with its respective visibility Modes should be

separated by Comma (,) Symbol as represented below.

Class derived: <visibility mode> base_class_name1, < visibility mode >
base_class_name2

Example 2:

Consider the same program in example 1

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 42

In the above example program the functions of class A i.e. getrollno (int r) & showrollno

() and functions of class B i.e. getmarks (float x, float y) & showmarks () are inherited

means these functions are declared in their respective classes but now these functions

representing as it belongs to class C, by the statement as mentioned above the compiler

represents all the functions of these three functions in only one class i.e.. Class C because

in the main function, all the functions are invoked using object of class C, So a compiler

reads only class C from which it invokes all the functions.

 Ambiguity Resolution in Inheritance

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 43

Occasionally, we may face a problem in using the multiple inheritance, when a function

with the same name appears in more than one base class. Consider the following two

classes.

Which display () function is used by the derived class when we inherit these two classes?

We can solve this problem by defining a named instance within the derived class, using

the class resolution operator with the function as shown below:

Ambiguity may also arise in single inheritance applications. For instance, consider the

following situation:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 44

In this case, the function in the derived class overrides the inheritance function and

therefore, a simple call to display () by B type object will invoke function defined in B

only. However, we may invoke the function defined in A by using the scope resolution

operator to specify the class.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 45

Example: Now we will implement a sample example which demonstrates the hierarchical
Inheritance.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 46

As I said hybrid inheritance is a mix of two or more types of inheritance, in our example now we

mixed Multi-Level and Multiple Inheritance. In the above class hierarchy observe the chain of

classes student, test and result represents multi-level inheritance and class hierarchy between

classes Test, sports and result represents Multiple Inheritance where result class derived from two

classes i.e. test and sports classes.

Now the below example program illustrates the implementation of both multiple and multi-level

inheritance.

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 47

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 48

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 49

A program to implement the concept of virtual base class is illustrated as bellow:

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 50

College of Education Department of Computer Science

Dr. Naseer Ali Hussein Page 51

