
Operating Systems Concepts 1 Assist. Lecturer: Mustafa Sadiq
Chapter 1 – Introduction

What are Operating Systems?

A program that manages the computer hardware. Therefore, it acts as an intermediary

between a user of a computer and the computer hardware.

Why we need an Operating system?

Generally an operating system is needed for the following reasons:

- Execute user programs and make solving user problems easier.

- Make the computer system convenient to use.

- Use the computer hardware in an efficient manner.

Computer systems

Computer systems can be divided into four components

–provides basic computing resources CPU, memory, I/O devices

-Controls and coordinates use of hardware among various applications

and users

–Define the ways in which the system resources are used to solve

the computing problems of the users like, Word processors, compilers, web browsers,

database systems, video games

User View

The user view of computer varies by the interface being used. The operating systems are

designed mostly for ease of use. Others are designed to maximize resource utilization. Other

operating systems are designed to compromise between individual usability and resource

utilization.

System view

From the computer’s point of view, the OS is a:

- resource allocator: Manages all resources and decides between conflicting requests

for efficient and fair resource use.

- control program: Controls execution of programs to prevent errors and improper use

of the computer

Operating Systems Concepts 2 Assist. Lecturer: Mustafa Sadiq

Operating systems goals:

1- Make the computer convenient to the user.

2- Use the computer hardware in an efficient manner.

 OS is like a government, it performs no useful functions by itself, but it provides an

environment within which other programs can do useful work.

OS functions:

1- Convenient to the user.

2- Efficient operation of the computer.

3- Resource allocator: OS acts like a manager of resources and allocate them to a specific

programs and users.

4- OS is a control program: controls the execution of the programs and prevent errors and

improper use of computer and controls the I/O devices

Types of OS: generally there are two types (single user and multiuser) and another

classification is as following:

1- Batch systems.

2- Time sharing systems.

Operating Systems Concepts 3 Assist. Lecturer: Mustafa Sadiq
3- PC systems.

4- Parallel systems (tightly coupled systems).

5- Real time systems.

6- Distributed systems (loosely coupled systems).

Operating System Historical Review

Operating systems and computer architecture have influenced each other. To facilitate the

use of the hardware, researchers developed operating systems. In the following historical

review, we will notice the mutual effect between operating systems and computer hardware

which led to developments in both sides.

Mainframe systems

Mainframe systems grow on three stages:

1- Batch systems: In this type of computer systems, the operator batch together jobs with

similar needs and ran through the computer as group. The operating system was

simple and its major task was to transfer control automatically from one job to the

next.

2- Multi-programmed systems: The operating system keeps several jobs in memory

simultaneously. Operating systems for the Multi-programmed is the first one which

make a decision for the users. Making this decision is called job scheduling.

3- Timeshared systems: The CPU executes multiple jobs by switching among them, but

the switches occurred so frequently the users can interact with each program while it is

running. A Timeshared operating systems allows many user programs (processes) to

share the computer simultaneously. The CPU executes multiple jobs by switching

among them, but the switches occurred so frequently the users can interact with each

program while it is running.

Desktop systems

The operating systems of desktop systems were neither multi-user nor multitasking.

Operating systems have changed with time; instead of maximizing CPU and peripheral

utilization, the systems improved to maximize user convenience and responsiveness.

Multiprocessor Systems (Parallel systems or tightly coupled systems)

Such systems have more than one processor in close communication sharing the computer

bus, the clock, and sometimes memory and peripheral devices.

Operating Systems Concepts 4 Assist. Lecturer: Mustafa Sadiq
Multiprocessor systems have three main advantages

1- Increase throughput.

2- Economy of scale.

3- Increased reliability.

This ability to continue providing service proportional to the level of surviving hardware is

called “graceful degradation” is also called “fault tolerant”.

There are different architectures for multiprocessor systems.

Distributed Systems

A network is a communication path between two or more systems. Distributed systems

depend on networking for their functionality. Using communicates, distributed systems are

able to share computational tasks, and provide a rich set of set of feature to users.

-server systems

-to-peer systems

Some operating system benefits from ideas of networking and distributed systems in build

network operating system.

Clustered Systems

Like parallel systems, clustered systems gather together multiple CPUs to accomplish

computational work, they composed of two or more individual systems coupled together.

The general accepted definition is that clustered computers share storage and is closely

linked via LAN networking. Clustering is usually performed to provide high availability.

Real-Time Systems

Special purpose operating system, it is used when there are rigid time requirements on the

operation of a processor or the flow of data, thus it is often used as a control device in

dedicated application. Real time system need that the processing must be done within the

defined time constraints or the system will fail.

There are two flavors of real time system:

-time system

Operating Systems Concepts 5 Assist. Lecturer: Mustafa Sadiq
Handheld Systems

Handheld systems include personal digital assistants (PDAs). Developers of handheld

systems and applications face many challenges (due to the limited size of such devices) such

as speed of processor, limited size of memory, and small display screen.

Computing Environments

All above systems are used in verity of computing environments settings.

-Based computing.

Chapter 2: Operating System Structures

Computer System Operation:

A modern, general-purpose computer system consists of CPU and a number of device

controllers that connected through a common bus that provides access to shared memory

system, CPU other devices can execute concurrently competing for memory cycles.

Booting:

It is the operation of bringing operating system kernel from the secondary storage and put it

in main storage to execute it in CPU. There is a program bootstrap which is performing this

operation when computer is powered up or rebooted.

Bootstrap software: it is an initial program and simple it is stored in read-only memory

(ROM) such as firmware or EEPROM within the computer hardware.

Jobs of Bootstrap program:

1- Initialize all the aspect of the system, from CPU registers to device controllers to memory

contents.

2- Locate and load the operating system kernel into memory then the operating system starts

executing the first process, such as “init” and waits for some event to occur.

Operating Systems Concepts 6 Assist. Lecturer: Mustafa Sadiq
The operating system then waits for some event to occur. Types of events are either software

events (system call) or hardware events (signals from the hardware devices to the CPU

through the system bus and known as an interrupt).

Note: all modern operating system are “interrupt driven”.

Trap (exception): it is a software-generated interrupt caused either by an error (ex: division

by zero or invalid memory access) or by a specific request from a user program that an

operating system service be performed.

Interrupt vector (IV): it is a fixed locations (an array) in the low memory area (first 100

locations of RAM) of operating system when the interrupt occur the CPU stops what it is

doing and transfer execution to a fixed location (IV) contain starting address of the interrupt

service routine(ISR), on completion the CPU resumes the interrupted computation.

Interrupt Service Routine: is it a routine provided to be responsible for dealing with the

interrupt.

Hardware protection:

when we have single user any error occur to the system then we could determine that this

error must be caused by the user program ,but when we begin to dealing with spooling

,multiprogramming, and sharing disk to hold many users data this sharing both improved

utilization and increase problems .

In multiprogramming system, where one erroneous program might modify the program or

data of another program, or even the resident monitor itself. MS-DOS and the Macintosh OS

both allow this kind of error.

A properly designed operating system must ensure that an incorrect (or malicious) program

cannot cause other program to execute incorrectly.

Many programming error are detected by the hardware these error are normally handled by

the operating system.

Dual-Mode Operation:

To ensure proper operation, we must protect the operating system and all other programs and

their data from any malfunctioning program. The approach taken by many operating systems

provides hardware support that allows us to differentiate among various modes of execution.

Operating Systems Concepts 7 Assist. Lecturer: Mustafa Sadiq
A bit, called the mode bit is added to the hardware of the computer to indicates the current

mode: monitor (0) or user (1) with mode bit we could distinguish between a task that is

executed on behalf of the operating system , and one that is executed on behalf of the user.

I/O Operation Protection:

A use program may disrupt the normal operation of the system by issuing illegal I/O

instruction we can use various mechanisms to ensure that such disruption can not take place

in the system.

One of them is by defining all I/O instructions to be privileged instructions. Thus users

cannot issue I/O instructions directly they must do it through the operating system, by

execute a system call to request that the operating system performing I/O in its behalf. The

operating system, executing in monitor mode, check that the request is valid, and (if the

request is valid) does the I/O requested. The operating system then returns to the user.

Memory Protection:

To insure correct operation, we must protect the interrupt vector and interrupt service routine

from modification by a user program. This protection must be provided by the hardware, we

need the ability to determine the range of legal addresses that the program may access, and to

protect the memory outside that space. We could provide the protection by using two

registers a base register and limit register

- Base register hold the smallest legal physical memory address.

- Limit register: contains the size of the range.

This protection is accomplished by the CPU hardware comparing every address generated in

user mode with the registers. Any attempt by a program executing in user mode to access

monitor memory or other users’ memory results in a trap to the monitor, which treats the

attempts as a fatal error.

CPU Protection:

In addition to protecting I/O and memory we must insure that the operating system maintains

control. We must prevent the user from getting stuck in an infinite loop or not calling system

services, and never returning control to the operating system. To accomplish this goal, we

can use a timer.

Operating Systems Concepts 8 Assist. Lecturer: Mustafa Sadiq
Timer can be set to interrupt the computer after a specified period. The period may be fixed

(for example, 1/60 second) or variable (for example, from 1 millisecond to 1 second) A

variable timer is generally implemented by a fixed rate clock and a counter.

We can use the timer to prevent a user program from running too long Simple technique is to

initialize a counter with the mount of time that a program is allowed to run.

Amore common use of timer is to implement time sharing. In the most case, the timer could

be set to interrupt every N millisecond, where N is the time slice that each user is allowed to

execute before the next user get control of the CPU. The operating system is invoked to

perform housekeeping tasks.

This procedure is known as a context switching, following a context switch, the next

program continues with its execution from the point at which it left off.

Operating System Structure

In the following lectures we will consider the components and services that are provided by

different operating systems.

System Components

Many modern computer systems share the goal of supporting the following components:

A process can be thought of a program in execution. A process needs certain resources to

accomplish its task. Also the process various initialization values.

A process is the unit of work in a system. Such a system consists of a collection of processes,

some of which are system processes others are user processes. All processes execute

concurrently by multiplexing the CPU among them.

The OS responsible for the following activities in connection with process management:

Operating Systems Concepts 9 Assist. Lecturer: Mustafa Sadiq
 Management

The main memory is the central to the operation of a modern computer system. For a

program to be executed it must mapped to absolute addresses and loaded to the MM.

The OS responsible for the following activities in connection with MM management:

available.

For convenient use of the computer, the OS provides a uniform logical view of information

storage. The OS abstracts from the physical properties of its storage device to define the

logical storage unit, the file. A file is a collection of related information defined by its

creator. These files are organized in directories to ease their use.

The OS responsible for the following activities in connection with file management:

One of the purposes of OS is to hide the peculiarities of specific hardware devices. The OS

responsible for the following activities in connection with I/O system management:

e driver interface.

The computer system must provide secondary storage to back up main memory because that

are hold by MM are lost when power is switched of f and the MM is too small to

Operating Systems Concepts 10 Assist. Lecturer: Mustafa Sadiq
accommodate all data programs. The OS responsible for the following activities in

connection with disk management:

A distributed system collects physically separate heterogeneous system into a single coherent

system, providing the user with the access to various resources that the system maintain.

Access to a shared resource allows computation speed up, increase functionality, increase

data arability, and enhance reliability.

Protection is any mechanism for controlling the access programs, processes, or users to the

resources defined by the computer system. This mechanism must provide means for

specification of the controls to be imposed and means for enforcement. Protection can

improve reliability by detecting latent errors at the interfaces between component

subsystems.

Command Interpreter System is the interface between the user and the OS. Some of these

Command Interpreter System are user friendly such as mouse based window and menus. In

other shells commands are typed on a keyboard.

Operating System Services

An operating system provides an environment for the execution of programs. It provides

certain services to programs and to the users of these programs. The specific services

provided differ from one operating system to another but we can identify common classes.

These operating system services are provided for the convenience of the programmer, to

make the programming task easier.

1. Program execution. 2. I/O operation. 3. File system manipulation. 4. Communications.

5. Error detection. 6. Resource allocation. 7. Accounting. 8. Protection

Operating Systems Concepts 11 Assist. Lecturer: Mustafa Sadiq
System Calls

System calls provide the interface between a process and the operating system. These calls

are generally available as assembly language instructions and they are usually listed in the

various manuals used by assembly language.

System Programs

System programs provide a convenient environment for program development and

execution. Some of them are simply user interfaces to system calls others are considerably

more complex. They can be divided into these categories:

execution

System Structure

A system as large and complex as a modern operating system must be engineered carefully if

it is to function properly and to be modified easily. There are three different system

structures:

ayered Approach

System programs are the programs that serve as the supplementary environment to the user

programs and they are divided into the following categories:

1- File management.

2- Status information.

3- File modification.

4- Programming language support.

5- Program loading and execution.

6- Communication.

Operating Systems Concepts 12 Assist. Lecturer: Mustafa Sadiq
Operating system structure:

1- No well defined: started as small, simple, limited and then grow with time (ex. MS-

DOS).

2- Limited structuring: such as UNIX, which consist of two parts (kernel and system

programs).

3- Partition the task into smaller components (modules): with carefully define I/P and

O/P and functions.

4- Layered approach (modularity): OS is divided into a number of layers each built on

the top of the lower layers. Layer 0 is the hardware and layer N is the user interface.

Layered approach takes the advantage of (Virtual Machine).

5- Micro kernels: as the OS expands, it becomes difficult to manage so, it is divided into

smaller kernels called microkernel that provides a communication facility between

client programs and various services.

6- Virtual machines: H/W is the lowest level, then the kernel level uses the H/W

instructions to create a set of (system calls), next level is the system programs and the

top layer is the application programs.

Operating system components:

Process Management, Memory management, File management, Input/Output System

Management, Secondary Memory Management, Command Interpreter System, Protection

System, Networking (distribution system).

Chapter 3: Processes

Process Concept

An operating system executes a variety of programs such that Batch system executes jobs

whereas Time-shared systems executes user programs or tasks. In this course we will use the

terms job and process almost interchangeably.

Process: a program in execution and each process execution must progress in sequential

fashion, despite of a single process of multiprocessing operating systems, each process must

be executed as a code line by line.

A process is more than a program code (text section) it also includes a program counter

represents the count of the current activity, an processor regisers, a stack which contains the

Operating Systems Concepts 13 Assist. Lecturer: Mustafa Sadiq
temporary data, data section (which contains global variables) and a heap (which is a

memory that is dynamically allocated to a process during run time).

Multiple parts of process includes:

- The program code, also called text section

- Current activity including program counter, processor registers

- Stack containing temporary data and Function parameters, return addresses, local

variables

- Data section containing global variables

- Heap containing memory dynamically allocated during run time

- A Program is a passive entity such as a file containing a list of instructions and stored on

a disk which is called an executable program. Whereas the process is active entity with a

program counter (PC) specifying the next instruction to be executed with a list of

associated resources.

 Program becomes process when executable file loaded into memory. Execution of program

started via GUI mouse clicks, command line entry of its name, etc. One program can be

several processes: Consider multiple users executing the same program

Operating Systems Concepts 14 Assist. Lecturer: Mustafa Sadiq
Process State: As a process executes, it changes state as the state of the process is defined as

part of the current activity of the process execution.

- new: The process is being created

- running: Instructions are being executed

- waiting: The process is waiting for some event to occur

- ready: The process is waiting to be assigned to a processor

- terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB): each process in the operating system is represented by a

process control block (PCB) or task control block (TCB) which is the Information associated

with each process and consist of: Process state, Program counter, CPU registers, CPU

scheduling information, Memory-management information, Accounting information, I/O

status information as in the figure:

Operating Systems Concepts 15 Assist. Lecturer: Mustafa Sadiq
CPU Switch From Process to Process

Process Scheduling

Multiprogramming and time sharing properties of modern operating systems aims to keep

many processes in the memory and make the CPU as busy as possible by switching back and

front among these processes which Maximize CPU utilization and reduce total execution

time by quickly switch processes onto CPU for time sharing. Process scheduler (as a part of

the OS) selects among available processes for next execution on CPU and Maintains

scheduling queues of processes

- Job queue: set of all processes in the system

- Ready queue: set of all processes residing in main memory, ready and waiting to execute

- Device queues: set of processes waiting for an I/O device to be available.

 Processes migrate among the various queues

Operating Systems Concepts 16 Assist. Lecturer: Mustafa Sadiq
Ready Queue And Various I/O Device Queues

Queueing Diagram Representation of Process Scheduling

Process Schedulers

Long-term scheduler (job scheduler): selects which processes should be brought into the

ready queue. Long-term scheduler is invoked very infrequently (once every some seconds or

minutes so it may be slow). Also the long-term scheduler controls the degree of

multiprogramming.

Short-term scheduler (CPU scheduler): selects which process should be executed next and

allocates CPU to it, Sometimes it is the only scheduler in a system. Short-term scheduler is

invoked very frequently every few milliseconds so it must be fast).

Medium term scheduler: some time sharing OS introduce additional intermediary schedulers

to (sometimes) remove some processes form memory and from active contention for the

CPU and reduce the degree of multiprogramming and continue these processes later.

Operating Systems Concepts 17 Assist. Lecturer: Mustafa Sadiq
Processes can be described as either I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts or CPU-bound process – spends more time doing

computations; few very long CPU bursts.

Addition of Medium Term Scheduling (swapping process)

Context Switch: When CPU switches to another process, the system must save the state of

the old process and load the saved state for the new process via a context switch. Context of

a process represented in the PCB. Context-switch time is overhead; the system does no

useful work while switching. The more complex the OS and the PCB leads to the longer the

context switch. Time dependent on hardware support. Some hardware provides multiple sets

of registers per CPU which allows multiple contexts loaded at once

Process Creation

Parent process create children processes, which, in turn create other processes, forming a tree

of processes. Generally, process identified and managed via a process identifier (PID)

Resource sharing can be with one of the following schemes (options):

- Parent and children share all resources

- Children share subset of parent’s resources

- Parent and child share no resources

Execution options:

- Parent and children execute concurrently

- Parent waits until children terminate

Address space sharing options:

- Child duplicate of parent

- Child has a program loaded into it

Operating Systems Concepts 18 Assist. Lecturer: Mustafa Sadiq
UNIX examples for process creation:

- fork system call creates new process

- exec system call used after a fork to replace the process’ memory space with a new

program

Process Termination

Process executes last statement and asks the operating system to delete it (exit). Output data

from child to parent (via wait). Process’ resources are deallocated by operating system.

Parent may terminate execution of children processes (abort). Child has exceeded allocated

resources. Task assigned to child is no longer required. If parent is exiting some operating

system do not allow child to continue if its parent terminates where all children terminated

immediately in a process called cascading termination.

Interprocess Communication

Processes within a system may be independent or cooperating. Cooperating process can

affect or be affected by other processes, including sharing data. Reasons for cooperating

processes: Information sharing, Computation speedup, Modularity, Convenience

Cooperating processes need interprocess communication (IPC)

There are two models of IPC

1- Shared memory

2- Message passing

Communications Models

Operating Systems Concepts 19 Assist. Lecturer: Mustafa Sadiq
Cooperating Processes

Independent process cannot affect or be affected by the execution of another process

Cooperating process can affect or be affected by the execution of another process

Advantages of process cooperation: Information sharing, Computation speed-up, Modularity,

Convenience

Producer-Consumer Problem: Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer process

unbounded-buffer places no practical limit on the size of the buffer

bounded-buffer assumes that there is a fixed buffer size

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to synchronize their actions. Message system

– processes communicate with each other without resorting to shared variables.

IPC facility provides two operations:

1- send(message) – message size fixed or variable

2- receive(message)

If P and Q wish to communicate, they need to:

1- establish a communication link between them

2- exchange messages via send/receive

Implementation of communication link

1- physical (e.g., shared memory, hardware bus)

2- logical (e.g., logical properties)

Direct Communication

In this type of communication, the Processes must name each other explicitly:

send (P, message) – send a message to process P.

receive(Q, message) – receive a message from process Q.

Properties of communication link

1- Links are established automatically

2- A link is associated with exactly one pair of communicating processes

3- Between each pair there exists exactly one link

The link may be unidirectional, but is usually bi-directional

Operating Systems Concepts 20 Assist. Lecturer: Mustafa Sadiq
Indirect Communication

Messages are directed and received from mailboxes (also referred to as ports)

Each mailbox has a unique id. Processes can communicate only if they share a mailbox

Properties of communication link

1- Link established only if processes share a common mailbox

2- A link may be associated with many processes

3- Each pair of processes may share several communication links

4- Link may be unidirectional or bi-directional

Operations

1- create a new mailbox

2- send and receive messages through mailbox

3- destroy a mailbox

4- Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

Mailbox sharing problems:

1- P1, P2, and P3 share mailbox A

2- P1, sends; P2 and P3 receive

3- Who gets the message?

Solutions

1- Allow a link to be associated with at most two processes

2- Allow only one process at a time to execute a receive operation

3- Allow the system to select arbitrarily the receiver. Sender is notified who the

receiver was.

Synchronization

Message passing may be either blocking or non-blocking. Blocking is considered

synchronous. Blocking send has the sender block until the message is received. Blocking

receive has the receiver block until a message is available. Non-blocking is considered

asynchronous. Non-blocking send has the sender send the message and continue. Non-

blocking receive has the receiver receive a valid message or null.

Operating Systems Concepts 21 Assist. Lecturer: Mustafa Sadiq
Buffering

Buffering is the process of sending and receiving a messages between two devices or two

processes with different speeds were a Queue of messages attached to the link; implemented

in one of three ways

1. Zero capacity – 0 messages: Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages: Sender must wait if link full

3. Unbounded capacity – infinite length: Sender never waits

Examples of IPC Systems – Windows XP

Message-passing centric via local procedure call (LPC) facility. Only works between

processes on the same system. Uses ports (like mailboxes) to establish and maintain

communication channels. Communication works as follows:

- The client opens a handle to the subsystem’s connection port object.

- The client sends a connection request.

- The server creates two private communication ports and returns the handle to one of

them to the client.

- The client and server use the corresponding port handle to send messages or callbacks

and to listen for replies.

Local Procedure Calls in Windows XP

Communications in Client-Server Systems

1- Sockets

2- Remote Procedure Calls

3- Pipes

4- Remote Method Invocation (Java)

Operating Systems Concepts 22 Assist. Lecturer: Mustafa Sadiq
1- Sockets

A socket is defined as an endpoint for communication a pair of processes communicating

over a network employ a pair of sockets. Concatenation of IP address and port number,

sockets can be identified. The socket 161.25.19.8:1625 refers to port 1625 on host

161.25.19.8. Communication consists between a pair of sockets.

Socket Communication

Java programming language provides three types of sockets as following:

1- Connection oriented sockets (TCP sockets) are implemented with socket class.

2- Connectionless socket (UDP sockets) use the DatagramSocket class.

3- Multicast socket class which is a subclass of the DatagramSocket class.

2- Remote Procedure Calls

One of the most common forms of remote service is the Remote procedure call (RPC) which

abstracts procedure calls mechanism between processes on networked systems. RPC allow

users to invoke a procedure stored on a remote host just as it is invoked locally using some

kind of code called (stub). Stubs are client-side proxy for the actual procedure on the server.

The client-side stub locates the server and Marshals the parameters. The server-side stub

receives this message, unpacks the marshaled parameters, and performs the procedure on the

server.

3- Pipes

One of the communication tools among processes in a coordinated processes system are the

pipes which Acts as a conduit allowing two processes to communicate. The Issues

controlling the use of pipes can be classified as:

- Is communication unidirectional or bidirectional?

Operating Systems Concepts 23 Assist. Lecturer: Mustafa Sadiq
- In the case of two-way communication, is it half or full-duplex?

- Must there exist a relationship (i.e. parent-child) between the communicating processes?

- Can the pipes be used over a network?

Ordinary Pipes

Ordinary Pipes allow communication in standard producer-consumer style. Producer writes

to one end (the write-end of the pipe). Consumer reads from the other end (the read-end of

the pipe). Ordinary pipes are therefore unidirectional. Require parent-child relationship

between communicating processes

Named Pipes

Named Pipes are more powerful than ordinary pipes. Communication is bidirectional. No

parent-child relationship is necessary between the communicating processes. Several

processes can use the named pipe for communication. Provided on both UNIX and Windows

systems

4- Remote Method Invocation (RMI): it is a Java feature similar to RPC allows a

thread to invoke a method on a remote method.

Operating Systems Concepts 24 Assist. Lecturer: Mustafa Sadiq
Chapter 4: Threads

Thread (task) is a basic unit of the CPU utilization consist of tread ID, program counter (PC),

register set, and a stack. Thread share with other threads belonging to the same process the

code section, the data section, and the OS resources. Threads run within application as a

process (single thread process) or a part of process (multithreading process). Multiple tasks

with the application can be implemented by separate threads such as Update display, Fetch

data, Spell checking, Answer a network request .

Example of multithreads in a single process:

Word processor may have many threads , one for displaying graphics, another for responding

for the keystrokes of the used, third for performing spelling and grammar checking and so

on.

Process creation is heavy-weight while thread creation is light-weight which means that

dealing with threads make the system faster and less need for mare hardware. Dealing with

treads instead of processes can simplify code, increase efficiency. OS Kernels are generally

multithreaded

Single and multithreaded processes

Benefits of Multithreading Programming:

1- Responsiveness: allow a program to continue running even if a part of a program is

blocking or is performing a lengthy operation.

2- Resource Sharing: threads are sharing the memory and resources of the process to

which they belong.

3- Economy: resource sharing allow reducing the required memory and resources to

create and manage multithreads within a single process.

Operating Systems Concepts 25 Assist. Lecturer: Mustafa Sadiq
4- Utilization of Multiprocessor architecture: multithreads can be executed in parallel

using multiprocessors in a multiprocessing systems.

User Threads: where the thread management done by user-level threads library above the

kernel and managed without the kernel support. Three primary thread libraries: POSIX

Pthreads, Win32 threads, Java threads

Kernel Threads: are the threads that are managed and supported directly by the OS Kernel.

Examples (Windows XP/2000, Solaris, Linux, Tru64 UNIX, Mac OS X)

Multithreading Models

1- Many-to-One

2- One-to-One

3- Many-to-Many

Many-to-One: Many user-level threads mapped to single kernel thread and thread

management done by the thread library in the user space. Examples: Solaris Green Threads,

GNU Portable Threads

One-to-One: Each user-level thread maps to one kernel thread and it provides more

concurrency than the first one by allowing another thread to work if one thread make a

blocking system call. Examples: Windows NT/XP/2000, Linux, Solaris 9 and later

Operating Systems Concepts 26 Assist. Lecturer: Mustafa Sadiq

Many-to-Many Model: Allows many user level threads to be mapped to many kernel

threads. Allows the operating system to create a sufficient number of kernel threads.

Examples are Solaris prior to version 9 and Windows NT/2000 with the Thread Fiber

package

Two-level Model: Similar to M:M model with a little variation where the user and kernel

threads are still multiplexed but allow also a user thread to be bound to kernel thread.

Examples: IRIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

Thread Libraries: Thread library provides programmer with API for creating and managing

threads and there are two primary ways of implementing the thread library either the library

is entirely being in user space or the Kernel-level library supported by the OS.

There are three main thread libraries in use today: POSIX PThreads, Win32, and JAVA.

Operating Systems Concepts 27 Assist. Lecturer: Mustafa Sadiq
Treading Issues:

1- Fork() and exec():

Fork() system call used to create a separate, duplicate processes but here invoking a fork()

system call can cause one of two results:

- Duplicating all the threads in the process invoking the fork().

- Duplicating only the thread invoked the fork().

Exec() system call used to save the results of a process and a thread in the same way.

2- Thread cancellation:

It is the operation of terminating the thread before it completes its task and always the thread

to be canceled called the (target thread). Cancellation done in one of two ways:

Signal Handling: Signals are used in UNIX systems to notify a process that a particular

event has occurred (ex. Illegal memory access, or divide by zero). A signal handler is used to

process signals in the following procedure:

1- Signal is generated by particular event

2- Signal is delivered to a process

3- Signal is handled

Options:

- Deliver the signal to the thread to which the signal applies

- Deliver the signal to every thread in the process

- Deliver the signal to certain threads in the process

- Assign a specific thread to receive all signals for the process

Thread Pools means creating a number of threads in a pool where they await working and

the advantages of it are that it is usually slightly faster to service a request with an existing

thread than create a new thread and allows the number of threads in the application(s) to be

bound to the size of the pool.

Operating Systems Concepts 28 Assist. Lecturer: Mustafa Sadiq
Lightweight Processes: it is an intermediate data structure between user and kernel threads

and used to facilitate communication and coordination between the kernel and thread library.

Windows XP Threads: Implements the one-to-one mapping, kernel-level. Each thread

contains: (A thread id, Register set, Separate user and kernel stacks, Private data storage

area, The register set, stacks, and private storage area are known as the context of the

threads)

The primary data structures of a thread include:

- ETHREAD (executive thread block)

- KTHREAD (kernel thread block)

- TEB (thread environment block)

Operating Systems Concepts 29 Assist. Lecturer: Mustafa Sadiq
Chapter 5: CPU Scheduling

Basic Concepts

In a single process systems there is only one process for execution in any time, so there is no

need for scheduling. In multiprocessing and time sharing systems the scheduling of the SPU

is a basic task for maximum CPU utilization and it is simple: each process executed until it

must wait (for some I/O device) where another process enters to the CPU for execution.

CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler: Selects from among the processes in memory that are ready to execute, and

allocates the CPU to one of them, CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

- Scheduling under 1 and 4 is non-preemptive (the process do not leave the CPU until it

finished) , whereas the other scheduling is preemptive (the process can leave the CPU

voluntarily for shorter of more priority processes depending on scheduling criteria).

Operating Systems Concepts 30 Assist. Lecturer: Mustafa Sadiq
Dispatcher: Dispatcher module gives control of the CPU to the process selected by the

short-term scheduler; and this involves switching context, switching to user mode and

jumping to the proper location in the user program to restart that program

Dispatch latency– time it takes for the dispatcher to stop one process and start another

running

Scheduling Criteria

1- CPU utilization – keep the CPU as busy as possible

2- Throughput – # of processes that complete their execution per time unit

3- Turnaround time – amount of time to execute a particular process

4- Waiting time – amount of time a process has been waiting in the ready queue

5- Response time – amount of time it takes from when a request was submitted until the

first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria (what we want)

1- Max CPU utilization

2- Max throughput

3- Min turnaround time

4- Min waiting time

5- Min response time

First-Come, First-Served (FCFS or FIFO) Scheduling

In this scheduling algorithm, the first process enters the ready queue will enters to the CPU

first and the second process enters second and so on.

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule

is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

Operating Systems Concepts 31 Assist. Lecturer: Mustafa Sadiq
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the orderP2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6;P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

The second case is much better than previous case because of the Convoy effect where the

FCFS algorithm is doing bad when short process arrives to the ready queue behind long

process

Shortest-Job-First (SJF) Scheduling

Sometimes it is called (Shortest Remaining Time First SRTF) and includes associate with

each process the length of its next CPU burst. Use these lengths to schedule the process with

the shortest time. SJF is optimal – gives minimum average waiting time for a given set of

processes, The difficulty is knowing the length of the next CPU request. SJF can be

preemptive or non-preemptive.

Priority Scheduling

A priority number (integer) is associated with each process depending on the type of process

and the CPU is allocated to the process with the highest priority (smallest integer  highest

priority). Equal priority processes are treated in FIFO order. Priority scheduling can be

Operating Systems Concepts 32 Assist. Lecturer: Mustafa Sadiq
preemptive or non-preemptive. SJF is a priority scheduling where priority is the predicted

next CPU burst time (the shorter the process the higher priority it will get and vice versa).

The Problem of this algorithm is Starvation which means that low priority processes may

never execute as shorter processes keep arriving to the ready queue. The Solution for such

problem is the process of Aging which means that as time progresses the OS must increase

the priority of the process.

Round Robin (RR)

This scheduling algorithm was designed especially for time sharing systems where each

process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After

this time has elapsed, the process is preempted and added to the end of the ready queue. If

there are n processes in the ready queue and the time quantum is q, then each process gets

1/n of the CPU time in chunks of at most q time units at once. No process waits more than

(n-1)q time units.

The Performance of this algorithm can be similar to the FCFS if the time slice (q) is too large

and if the (q) is too small then many context switched may occur that make an overhead on

the system performance. So the (q) must be with adequate system dependent value.

Multilevel Queue

Another type of scheduling is designed for situation when processes can be easily classified

into different groups. Ready queue is partitioned into separate queues:

foreground (interactive) and background (batch) with Each queue has its own scheduling

algorithm. For example foreground – RR and background – FCFS

Operating Systems Concepts 33 Assist. Lecturer: Mustafa Sadiq
Scheduling must be done between the queues with either fixed priority scheduling; (i.e.,

serve all from foreground then from background) and here is possibility of starvation. Or

Time slice where each queue gets a certain amount of CPU time which it can schedule

amongst its processes; i.e., 80% to foreground in RR and 20% to background in FCFS

Multilevel Feedback Queue

In spite of the low scheduling overhead of the previous type of scheduling but it is inflexible

so we use this type where a process can move between the various queues; aging can be

implemented this way. Multilevel-feedback-queue scheduler defined by the following

parameters:

1- number of queues

2- scheduling algorithms for each queue

3- method used to determine when to upgrade a process

4- method used to determine when to demote a process

5- method used to determine which queue a process will enter when it needs service

Example of Multilevel Feedback Queue

Three queues: with Q0 – RR with time quantum 8 milliseconds and Q1 – RR time quantum

16 milliseconds and Q2 – FCFS

Scheduling

A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1. At Q1 job is

again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is

preempted and moved to queue Q2.

Operating Systems Concepts 34 Assist. Lecturer: Mustafa Sadiq

Multiple-Processor Scheduling

All the above scheduling algorithms were for single processor systems and for multiple

processor systems a concept of load sharing must adopted. CPU scheduling more complex

when multiple CPUs are available.

Homogeneous processors within a multiprocessor

1- Asymmetric multiprocessing – only one processor accesses the system data

structures, alleviating the need for data sharing

2- Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes

in common ready queue, or each has its own private queue of ready processes

3- Processor affinity – process has affinity for processor on which it is currently running

and SMP systems must prevent the process form migrating from one processor to

another.

- soft affinity: in systems that has a policy attempting to prevent migration but it still

could happened.

- hard affinity: in systems that has a system calls preventing processes from migrating

from a processor to another. Such as in LINUX operating system.

Multicore Processors: Recent trend to place multiple processor cores on same physical

chip, Faster and consume less power, Multiple threads per core also growing, Takes

advantage of memory stall to make progress on another thread while memory retrieve

happens

Operating Systems Concepts 35 Assist. Lecturer: Mustafa Sadiq
Multithreaded Multicore System

Symetric Multithreading Systems (SMT)

Allow several threads to run concurrently by providing multiple physical processors,

alternative strategy of SMT is to provide multiple logical processors which is called also

hyper threading technology such as in Intel processors.

Operating Systems Concepts 36 Assist. Lecturer: Mustafa Sadiq
Chapter 6: Process Synchronization

Cooperating process: is a process that affect or being affected by the execution of other

processes in the system. These processes share logical address space or data and messages.

Concurrent access to shared data may result in data inconsistency. Maintaining data

consistency requires mechanisms to ensure the orderly execution of cooperating processes.

Suppose that we wanted to provide a solution to the consumer-producer problem that fills all

the buffers. We can do so by having an integer count that keeps track of the number of full

buffers. Initially, count is set to 0. It is incremented by the producer after it produces a new

buffer and is decremented by the consumer after it consumes a buffer.

Race Condition a situation where several processes access and manipulate the same data

concurrently and the results of the execution depends on the particular order in which the

access take place. As in the following example:

- count++ could be implemented as

 register1 = count

 register1 = register1 + 1

 count = register1

- count-- could be implemented as

 register2 = count

 register2 = register2 - 1

 count = register2

- Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 = 4}

S4: producer execute count = register1 {count = 6 }

S5: consumer execute count = register2 {count = 4}

Critical section: it is a segment of case in each process in the system where the process may

changing common variables, updating a table, writing a file, and so on.

Critical section problem: is to design a protocol that allow processes to cooperate with a

condition that when one of them enters execution of its critical section, other are not.

Operating Systems Concepts 37 Assist. Lecturer: Mustafa Sadiq
Solution to Critical-Section Problem

1- Mutual Exclusion - If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes

that wish to enter their critical section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted, Assume that each process executes at a nonzero

speed, No assumption concerning relative speed of the N processes

Critical section problem solutions:

1- Peterson’s Solution

A classical software based solution that is restricted to only two processes that alternates the

execution of the critical section and the remaining section of them. Assume that the LOAD

and STORE instructions are atomic; that is, cannot be interrupted. The two processes share

two variables:

int turn;

Boolean flag[2]

The variable turn indicates whose turn it is to enter the critical section. The flag array is used

to indicate if a process is ready to enter the critical section. flag[i] = true implies that process

Pi is ready!

2- Synchronization Hardware

Many systems provide hardware support for critical section code by using a uniprocessors

environment that prevent interrupts from occurring while a shared variable war being

modified. Currently running code would execute without preemption. Generally it is too

inefficient on multiprocessor systems. Operating systems using this not broadly scalable.

Modern machines provide special atomic (non-interruptible) hardware instructions.

3- Semaphore: is a synchronization tool that does not require busy waiting, Semaphore

is an integer variable with two standard atomic operations: wait() and signal()

Originally called P() and V(). All the modifications to the integer value of the

semaphore in the wait() and signal () operations must be executed indivisibly.

Operating Systems Concepts 38 Assist. Lecturer: Mustafa Sadiq
Less complicated. Can only be accessed via two indivisible (atomic) operations

wait (S) {

 while S <= 0

 ; // no-op

 S--; }

signal (S) { S++; }

Semaphore as General Synchronization Tool: there are two types of semaphores:

Counting semaphore – integer value can range over an unrestricted domain

Binary semaphore – integer value can range only between 0 and 1; can be simpler to

implement, Also known as mutex locks . Can implement a counting semaphore S as a binary

semaphore. Provides mutual exclusion

Semaphore mutex; // initialized to 1

do { wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

} while (TRUE);

Semaphore Implementation

Must guarantee that no two processes can execute wait () and signal () on the same

semaphore at the same time. Thus, implementation becomes the critical section problem

where the wait and signal code are placed in the critical section. Could now have busy

waiting in critical section implementation

But implementation code is short. Little busy waiting if critical section rarely occupied. Note

that applications may spend lots of time in critical sections and therefore this is not a good

solution.

Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting queue. Each entry in a waiting queue has

two data items: value (of type integer), pointer to next record in the list. Two operations:

- Block – place the process invoking the operation on the appropriate waiting queue.

- Wakeup – remove one of processes in the waiting queue and place it in the ready

queue.

Operating Systems Concepts 39 Assist. Lecturer: Mustafa Sadiq
Deadlock and Starvation

Deadlock (indefinite blocking): happens when two or more processes are waiting indefinitely

for an event that can be caused by only one of the waiting processes. Let S and Q be two

semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

Starvation – indefinite blocking means that a process may never be removed from the

semaphore queue in which it is suspended

Priority Inversion Scheduling problem when lower-priority process holds a lock needed by

higher-priority process

Classical Problems of Synchronization

- Bounded-Buffer Problem

- Readers and Writers Problem

- Dining-Philosophers Problem

Bounded-Buffer Problem

N buffers, each can hold one item

Semaphore mutex initialized to the value 1

Semaphore full initialized to the value 0

Semaphore empty initialized to the value N.

Readers-Writers Problem

A data set is shared among a number of concurrent processes

Readers – only read the data set; they do not perform any updates

Writers – can both read and write

Problem – allow multiple readers to read at the same time. Only one single writer can access

the shared data at the same time

Shared Data

Operating Systems Concepts 40 Assist. Lecturer: Mustafa Sadiq
Data set

Semaphore mutex initialized to 1

Semaphore wrt initialized to 1

Integer readcount initialized to 0

Dining-Philosophers Problem

Operating Systems Concepts 41 Assist. Lecturer: Mustafa Sadiq
Monitors: A high-level abstraction that provides a convenient and effective mechanism for

process synchronization, only one process may be active within the monitor at a time

Schematic view of a Monitor

Condition Variables

- condition x, y; and two operations on a condition variable:

x.wait () – a process that invokes the operation is suspended.

x.signal () – resumes one of processes (if any) that invoked x.wait ()

Monitor with Condition Variables

Synchronization Examples

Solaris, Windows XP, Linux, Pthreads

Solaris Synchronization

Implements a variety of locks to support multitasking, multithreading (including real-time

threads), and multiprocessing. Uses adaptive mutexes for efficiency when protecting data

from short code segments. Uses condition variables and readers-writers locks when longer

Operating Systems Concepts 42 Assist. Lecturer: Mustafa Sadiq
sections of code need access to data. Uses turnstiles to order the list of threads waiting to

acquire either an adaptive mutex or reader-writer lock

Windows XP Synchronization

Uses interrupt masks to protect access to global resources on uniprocessor systems. Uses

spinlocks on multiprocessor systems. Also provides dispatcher objects which may act as

either mutexes and semaphores. Dispatcher objects may also provide events, An event acts

much like a condition variable

Linux Synchronization

Linux: Prior to kernel Version 2.6, disables interrupts to implement short critical sections.

Version 2.6 and later, fully preemptive, also Linux provides: semaphores, spin locks

Pthreads Synchronization

Pthreads API is OS-independent, it provides: mutex locks, condition variables, non-portable

extensions include: read-write locks, spin locks

Operating Systems Concepts 43 Assist. Lecturer: Mustafa Sadiq
Chapter 7: Deadlocks

The Deadlock Problem:

A set of blocked processes each holding a resource and waiting to acquire a resource held by

another process in the set. Example: System has 2 disk drives, P1 and P2 each hold one disk

drive and each needs another one

Example: semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

Traffic only in one direction. Each section of a bridge can be viewed as a resource

If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)

Several cars may have to be backed up if a deadlock occurs. Starvation is possible

Note – Most OSs do not prevent or deal with deadlocks

System Model

Resource types R1, R2, . . ., Rm: could be CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances. Each process utilizes a resource as follows:

- request

- use

- release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

1- Mutual exclusion: only one process at a time can use a resource

2- Hold and wait: a process holding at least one resource is waiting to acquire additional

resources held by other processes

Operating Systems Concepts 44 Assist. Lecturer: Mustafa Sadiq
3- No preemption: a resource can be released only voluntarily by the process holding it,

after that process has completed its task

4- Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is

waiting for a resource that is held by P1, P1 is waiting for a resource that is held by P2,

…, Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting for a resource

that is held by P0.

Resource-Allocation Graph

A set of vertices V and a set of edges E.

V is partitioned into two types:

- P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

- R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

request edge – directed edge P1 Rj

assignment edge – directed edge RjPi

Operating Systems Concepts 45 Assist. Lecturer: Mustafa Sadiq
Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Graph With A Cycle But No Deadlock

Operating Systems Concepts 46 Assist. Lecturer: Mustafa Sadiq
Basic Facts

1- If graph contains no cycles  no deadlock

2- If graph contains a cycle 

- if only one instance per resource type, then deadlock

- if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state. Allow the system to enter a

deadlock state and then recover. Ignore the problem and pretend that deadlocks never occur

in the system; used by most operating systems, including UNIX

Deadlock Prevention: Restrain the ways request can be made

1- Mutual Exclusion – not required for sharable resources; must hold for nonsharable

resources

2- Hold and Wait – must guarantee that whenever a process requests a resource, it does

not hold any other resources

- Require process to request and be allocated all its resources before it begins execution,

or allow process to request resources only when the process has none

- Low resource utilization; starvation possible

3- No Preemption – If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all resources currently being

held are released

- Preempted resources are added to the list of resources for which the process is waiting

- Process will be restarted only when it can regain its old resources, as well as the new

ones that it is requesting

4- Circular Wait – impose a total ordering of all resource types, and require that each

process requests resources in an increasing order of enumeration

Deadlock Avoidance

Requires that the system has some additional a priori information available

Simplest and most useful model requires that each process declare the maximum number of

resources of each type that it may need. The deadlock-avoidance algorithm dynamically

examines the resource-allocation state to ensure that there can never be a circular-wait

Operating Systems Concepts 47 Assist. Lecturer: Mustafa Sadiq
condition. Resource-allocation state is defined by the number of available and allocated

resources, and the maximum demands of the processes

Safe State

When a process requests an available resource, system must decide if immediate allocation

leaves the system in a safe state. System is in safe state if there exists a sequence <P1, P2, …,

Pn> of ALL the processes is the systems such that for each Pi, the resources that Pi can still

request can be satisfied by currently available resources + resources held by all the Pj, with j

<i. That is:

- If Pi resource needs are not immediately available, then Pi can wait until all Pjhave

finished

- When Pj is finished, Pi can obtain needed resources, execute, return allocated

resources, and terminate

- When Pi terminates, Pi +1 can obtain its needed resources, and so on

Basic Facts

- If a system is in safe state  no deadlocks

- If a system is in unsafe state  possibility of deadlock

- Avoidance  ensure that a system will never enter an unsafe state.

Safe, Unsafe , Deadlock State

Avoidance algorithms

Single instance of a resource type Use a resource-allocation graph

Multiple instances of a resource type Use the banker’s algorithm

Resource-Allocation Graph Scheme

Claim edge PiRj indicated that process Pj may request resource Rj; represented by a dashed

line

Operating Systems Concepts 48 Assist. Lecturer: Mustafa Sadiq
Claim edge converts to request edge when a process requests a resource

Request edge converted to an assignment edge when the resource is allocated to the process

When a resource is released by a process, assignment edge reconverts to a claim edge

Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj. The request can be granted only if converting

the request edge to an assignment edge does not result in the formation of a cycle in the

resource allocation graph

Banker’s Algorithm

It is used for Multiple instances resources. each process must a priori claim maximum use.

When a process requests a resource it may have to wait. When a process gets all its resources

it must return them in a finite amount of time

Operating Systems Concepts 49 Assist. Lecturer: Mustafa Sadiq
Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

1- Available: Vector of length m. If available [j] = k, there are k instances of resource

type Rj available

2- Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of

resource type Rj

3- Allocation: n x m matrix. If Allocation [i,j] = k then Pi is currently allocated k

instances of Rj

4- Need: n x m matrix. If Need [i,j] = k, then Pi may need k more instances of Rj to

complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1- Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2- Find and i such that both:

(a) Finish [i] = false

(b) NeediWork

If no such i exists, go to step 4

3- Work = Work + Allocationi

Finish[i] = true

go to step 2

4- If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances

of resource type Rj

1.If Requesti  Needi go to step 2. Otherwise, raise error condition, since process has

exceeded its maximum claim

2.If Requesti  Available, go to step 3. Otherwise Pi must wait, since resources are not

available

3.Pretend to allocate requested resources to Pi by modifying the state as follows:

Operating Systems Concepts 50 Assist. Lecturer: Mustafa Sadiq
 Available = Available – Request;

 Allocationi= Allocationi + Requesti;

 Needi=Needi – Requesti;

1- If safe  the resources are allocated to Pi

2- If unsafe  Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

Assume that you have a system with 5 processes P0 through P4; and 3 resource types:

A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

The system is in a safe state since the sequence <P1, P3, P4, P2, P0> satisfies safety criteria

Operating Systems Concepts 51 Assist. Lecturer: Mustafa Sadiq
Example: if P1 Request (1,0,2)

Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 1 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

requirement

- Can request for (3,3,0) by P4 be granted?

- Can request for (0,2,0) by P0 be granted?

Deadlock Detection

- Allow system to enter deadlock state

- Detection algorithm

- Recovery scheme

Single Instance of Each Resource Type

Maintain wait-for graph that has Nodes are processes. PiPj if Pi is waiting for Pj

Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle,

there exists a deadlock. An algorithm to detect a cycle in a graph requires an order of n
2

operations, where n is the number of vertices in the graph

Operating Systems Concepts 52 Assist. Lecturer: Mustafa Sadiq
Resource-Allocation Graph and Wait-for Graph

Several Instances of a Resource Type

Available: A vector of length m indicates the number of available resources of each type.

Allocation: An n x m matrix defines the number of resources of each type currently

allocated to each process.

Request: An n x m matrix indicates the current request of each process. If Request [ij] = k,

then process Pi is requesting k more instances of resource type. Rj.

Detection Algorithm

1- Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) RequestiWork

3- If no such i exists, go to step 4

Work = Work + Allocationi

Finish[i] = true

go to step 2

4.If Finish[i] == false, for some i, 1 in, then the system is in deadlock state. Moreover, if

Finish[i] == false, then Pi is deadlocked

Operating Systems Concepts 53 Assist. Lecturer: Mustafa Sadiq
Algorithm requires an order of O(m x n

2)
 operations to detect whether the system is in

deadlocked state

Example of Detection Algorithm

Five processes P0 through P4;three resource types A (7 instances), B (2 instances), and C (6

instances)

Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

P2 requests an additional instance of type C

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

State of system?

Can reclaim resources held by process P0, but insufficient resources to fulfill other processes;

requests

Deadlock exists, consisting of processes P1, P2, P3, and P4

Operating Systems Concepts 54 Assist. Lecturer: Mustafa Sadiq
Detection-Algorithm Usage

When, and how often, to invoke depends on:

- How often a deadlock is likely to occur?

- How many processes will need to be rolled back? one for each disjoint cycle

If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph

and so we would not be able to tell which of the many deadlocked processes “caused” the

deadlock

Recovery from Deadlock: Process Termination

1- Abort all deadlocked processes

2- Abort one process at a time until the deadlock cycle is eliminated

3- In which order should we choose to abort?

- Priority of the process

- How long process has computed, and how much longer to completion

- Resources the process has used

- Resources process needs to complete

- How many processes will need to be terminated

- Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that state

Starvation – same process may always be picked as victim, include number of rollback in

cost factor

Operating Systems Concepts 55 Assist. Lecturer: Mustafa Sadiq
Chapter 8: Main Memory Management

Background

Program must be brought from HD into memory and placed within a process for it to be run

Main memory and registers are only storage CPU can access directly

Register access in one CPU clock (or less)

Main memory can take many cycles

Cache sits between main memory and CPU registers

Protection of memory required to ensure correct operation

Base and Limit Registers

A pair of base and limit registers define the logical address space

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at three different

stages

Compile time: If memory location known a priori, absolute code can be generated; must

recompile code if starting location changes

Load time: Must generate relocatable code if memory location is not known at compile time

Execution time: Binding delayed until run time if the process can be moved during its

execution from one memory segment to another. Need hardware support for address maps

(e.g., base and limit registers)

Operating Systems Concepts 56 Assist. Lecturer: Mustafa Sadiq
Multistep Processing of a User Program

Logical vs. Physical Address Space

The concept of a logical address space that is bound to a separate physical address space is

central to proper memory management. Logical address – generated by the CPU; also

referred to as virtual address. Physical address is the address seen by the memory unit.

Logical and physical addresses are the same in compile-time and load-time address-binding

schemes; logical (virtual) and physical addresses differ in execution-time address-binding

scheme

Memory-Management Unit (MMU)

Is a hardware device that maps virtual to physical address. In MMU scheme, the value in the

relocation register is added to every address generated by a user process at the time it is sent

to memory. The user program deals with logical addresses; it never sees the real physical

addresses

Operating Systems Concepts 57 Assist. Lecturer: Mustafa Sadiq
Dynamic relocation using relocation register

Hardware Support for Relocation and Limit Registers

Dynamic Storage-Allocation Problem

How to satisfy a request of size n from a list of free holes

- First-fit: Allocate the first hole that is big enough

- Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless

ordered by size, Produces the smallest leftover hole

- Worst-fit: Allocate the largest hole; must also search entire list, Produces the largest

leftover hole

* First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Paging

Logical address space of a process can be noncontiguous; process is allocated physical

memory whenever the latter is available

Divide physical memory into fixed-sized blocks called frames (size is power of 2, between

512 bytes and 8,192 bytes). Divide logical memory into blocks of same size called pages

Keep track of all free frames. To run a program of size n pages, need to find n free frames

and load program. Set up a page table to translate logical to physical addresses

Operating Systems Concepts 58 Assist. Lecturer: Mustafa Sadiq
Address Translation Scheme

- Address generated by CPU is divided into:

Page number (p) – used as an index into a page table which contains base address of each

page in physical memory

Page offset (d) – combined with base address to define the physical memory address that is

sent to the memory unit. For given logical address space 2
m

and page size2
n

Paging Hardware

Paging Model of Logical and Physical Memory Paging Example

Operating Systems Concepts 59 Assist. Lecturer: Mustafa Sadiq
Implementation of Page Table:

 Page table is kept in main memory and usually consist of:

- Page-table base register (PTBR) points to the page table

- Page-table length register (PRLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses. One for the page

table and one for the data/instruction. The two memory access problem can be solved by the

use of a special fast-lookup hardware cache called associative memory or translation look-

aside buffers (TLBs). Some TLBs store address-space identifiers (ASIDs) in each TLB entry

– uniquely identifies each process to provide address-space protection for that process

Paging Hardware with TLB

Shared Pages

1- Shared code:

One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers,

window systems). Shared code must appear in same location in the logical address space of

all processes

2- Private code and data

Each process keeps a separate copy of the code and data

The pages for the private code and data can appear anywhere in the logical address space

Operating Systems Concepts 60 Assist. Lecturer: Mustafa Sadiq
Shared Pages Example

Structure of the Page Table

Hierarchical Paging, Hashed Page Tables, Inverted Page Tables

Segmentation

Memory-management scheme that supports user view of memory . A program is a collection

of segments. A segment is a logical unit such as: main program, procedure, function,

method, object, local variables, global variables, common block, stack, symbol table, arrays

User’s View of a Program Logical View of Segmentation

Segmentation Architecture

Logical address consists of a two tuple: <segment-number, offset>,

Segment table – maps two-dimensional physical addresses; each table entry has:

base – contains the starting physical address where the segments reside in memory

Operating Systems Concepts 61 Assist. Lecturer: Mustafa Sadiq
limit – specifies the length of the segment

Segment-table base register (STBR) points to the segment table’s location in memory

Segment-table length register (STLR) indicates number of segments used by a program;

 (segment number s is legal if s< STLR)

Segmentation Hardware

Example of Segmentation

Example: The Intel Pentium

Supports both segmentation and segmentation with paging

CPU generates logical address Given to segmentation unit, Which produces linear addresses

Linear address given to paging unit, Which generates physical address in main memory

Paging units form equivalent of MMU

Operating Systems Concepts 62 Assist. Lecturer: Mustafa Sadiq
Logical to Physical Address Translation in Pentium

Operating Systems Concepts 63 Assist. Lecturer: Mustafa Sadiq
Chapter 9: Virtual Memory

Virtual memory: is the process of separation of user logical memory from physical

memory. Only part of the program needs to be in memory for execution. Logical address

space can therefore be much larger than physical address space. Allows address spaces to be

shared by several processes. Allows for more efficient process creation.

Virtual memory can be implemented via:

1- Demand paging

2- Demand segmentation

Demand Paging: Bring a page into memory only when it is needed

- Less I/O needed

- Less memory needed

- Faster response

- More users

- Page is needed  reference to it

- invalid reference  abort

- not-in-memory  bring to memory

- Lazy swapper – never swaps a page into memory unless page will be needed

- Swapper that deals with pages is a pager

Transfer of a Paged Memory to Contiguous Disk Space

Valid-Invalid Bit

With each page table entry a valid–invalid bit is associated

(v  in-memory, i  not-in-memory). Initially valid–invalid bit is set to i on all entries

During address translation, if valid–invalid bit in page table entry is I  page fault

Operating Systems Concepts 64 Assist. Lecturer: Mustafa Sadiq
Example of a page table snapshot:

Page Table When Some Pages Are Not in Main Memory

Page Fault

- If there is a reference to a page, first reference to that page will trap to operating system:

page fault. Operating system looks at another table to decide:

- Invalid reference  abort

- Just not in memory

- Get empty frame

- Swap page into frame

- Reset tables

- Set validation bit = v

- Restart the instruction that caused the page fault

- Restart instruction block move

- auto increment/decrement location

Operating Systems Concepts 65 Assist. Lecturer: Mustafa Sadiq
Steps in Handling a Page Fault

Process Creation

- Virtual memory allows other benefits during process creation:

 - Copy-on-Write

 - Memory-Mapped Files.

Copy-on-Write

- Copy-on-Write (COW) allows both parent and child processes to initially share the same

pages in memory If either process modifies a shared page, only then is the page copied

- COW allows more efficient process creation as only modified pages are copied

- Free pages are allocated from a pool of zeroed-out pages

Before Process 1 Modifies Page C After Process 1 Modifies Page C

What happens if there is no free frame?

- Page replacement – find some page in memory, but not really in use, swap it out algorithm

- performance – want an algorithm which will result in minimum number of page faults

- Same page may be brought into memory several times

Operating Systems Concepts 66 Assist. Lecturer: Mustafa Sadiq
Page Replacement

- Prevent over-allocation of memory by modifying page-fault service routine to include page

replacement

- Use modify (dirty) bit to reduce overhead of page transfers – only modified pages are written

to disk

- Page replacement completes separation between logical memory and physical memory –

large virtual memory can be provided on a smaller physical memory

Need For Page Replacement

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it.

- If there is no free frame, use a page replacement algorithm to select a victim frame

3. Bring the desired page into the (newly) free frame; update the page and frame tables

4. Restart the process

Page Replacement

Operating Systems Concepts 67 Assist. Lecturer: Mustafa Sadiq

Page Replacement Algorithms

- Want lowest page-fault rate

- Evaluate algorithm by running it on a particular string of memory references (reference

string) and computing the number of page faults on that string

- In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

First-In-First-Out (FIFO) Algorithm

FIFO Page Replacement

Operating Systems Concepts 68 Assist. Lecturer: Mustafa Sadiq
Optimal Algorithm

Optimal Page Replacement

Least Recently Used (LRU) Algorithm

Operating Systems Concepts 69 Assist. Lecturer: Mustafa Sadiq
LRU Page Replacement

- Stack implementation – keep a stack of page numbers in a double link form:

- Page referenced:

- move it to the top

- requires 6 pointers to be changed, No search for replacement

Use of A Stack to Record The Most Recent Page References

Allocation of Frames

- Each process needs minimum number of pages

- Example: IBM 370 – 6 pages to handle SS MOVE instruction:

- instruction is 6 bytes, might span 2 pages

- 2 pages to handle from

- 2 pages to handle to

- Two major allocation schemes: (fixed allocation, priority allocation)

Fixed Allocation

- Equal allocation – For example, if there are 100 frames and 5 processes, give each process

20 frames.

- Proportional allocation – Allocate according to the size of process

Priority Allocation

- Use a proportional allocation scheme using priorities rather than size

Operating Systems Concepts 70 Assist. Lecturer: Mustafa Sadiq
- If process Pi generates a page fault,

- select for replacement one of its frames

- select for replacement a frame from a process with lower priority number

Global vs. Local Allocation

- Global replacement – process selects a replacement frame from the set of all frames; one

process can take a frame from another

- Local replacement – each process selects from only its own set of allocated frames

Thrashing

- If a process does not have “enough” pages, the page-fault rate is very high. This leads to:

- low CPU utilization

- operating system thinks that it needs to increase the degree of multiprogramming

- another process added to the system

- Thrashing  a process is busy swapping pages in and out

Other Issues – Page Size

- Page size selection must take into consideration:

1- fragmentation

2- table size

3- I/O overhead

4- locality

Other Issues – TLB Reach

- TLB Reach - The amount of memory accessible from the TLB

- TLB Reach = (TLB Size) X (Page Size)

- Ideally, the working set of each process is stored in the TLB

- Otherwise there is a high degree of page faults

- Increase the Page Size

- This may lead to an increase in fragmentation as not all applications require a large page size

- Provide Multiple Page Sizes

- This allows applications that require larger page sizes the opportunity to use them without an

increase in fragmentation

Operating Systems Concepts 71 Assist. Lecturer: Mustafa Sadiq
Chapter 10: File-System Interface

File Concept: a file is a contiguous logical address space of many types as Data, numeric,

character, binary, Program. It provides the mechanism for on line storage of data and

programs of the OS and the users.

File: is a collection of related information recorded on a secondary storage and it is the

smallest allotment logical secondary storage from the user point of view. File Structure can

be None -sequence of words, bytes, Simple record structure, Lines, Fixed length, Variable

length, Complex Structures, Formatted document, or Relocatable load file.

File Attributes

�Name–only information kept in human-readable form.

�Identifier–unique tag (number) identifies file within file system

�Type–needed for systems that support different types

�Location–pointer to file location on device

�Size–current file size

�Protection–controls who can do reading, writing, executing

�Time, date, and user identification–data for protection, security, and usage monitoring

�Information about files are kept in the directory structure, which is maintained on the disk

File Operations

�File is an abstract data type

�Create

�Write

�Read

�Reposition within file

�Delete

�Truncate: reset file length to zero with fixing all the other attributes.

�Open(Fi)–search the directory structure on disk for entry Fi, and move the content of entry

to memory

�Close (Fi)–move the content of entry Fi in memory to directory structure on disk

Open Files: Several pieces of data are needed to manage open files:

�File pointer: pointer to last read/write location, per process that has the file open

Operating Systems Concepts 72 Assist. Lecturer: Mustafa Sadiq
�File-open count: counter of number of times a file is open –to allow removal of data from

open-file table when last processes closes it

�Disk location of the file: cache of data access information

�Access rights: per-process access mode information

Open File Locking: Provided by some operating systems and file systems

�Mediates access to a file

�Mandatory or advisory:

�Mandatory–access is denied depending on locks held and requested

�Advisory–processes can find status of locks and decide what to do

File Types –Name, Extension

Operating Systems Concepts 73 Assist. Lecturer: Mustafa Sadiq
Directory Structure

Disk Structure: Disk can be subdivided into partitions

�Disks or partitions can be RAID protected against failure

�Disk or partition can be used raw–without a file system, or formatted with a file system

�Partitions also known as minidisks, slices

�Entity containing file system known as a volume

�Each volume containing file system also tracks that file system’s info in device directory

or volume table of contents. As well as general-purpose file systems there are many

special-purpose file systems, frequently all within the same operating system or computer

A Typical File-system Organization

Operating Systems Concepts 74 Assist. Lecturer: Mustafa Sadiq
File Sharing: Sharing of files on multi-user systems is desirable. Sharing may be done

through a protection scheme. On distributed systems, files may be shared across a network.

Network File System (NFS) is a common distributed file-sharing method

File Sharing –Multiple Users

User IDs identify users, allowing permissions and protections to be per-user

Group IDs allow users to be in groups, permitting group access rights

File Sharing –Remote File Systems

Uses networking to allow file system access between systems can be Manually via programs

like FTP or Automatically, seamlessly using distributed file systems or Semi automatically

via the world wide web (WWW).

�Client-server model allows clients to mount remote file systems from servers. Server can

serve multiple clients. Client and user-on-client identification is insecure or complicated

�NFS is standard UNIX client-server file sharing protocol

�CIFS is standard Windows protocol

�Standard operating system file calls are translated into remote calls

�Distributed Information Systems (distributed naming services) such as LDAP, DNS,

NIS, Active Directory implement unified access to information needed for remote computing

Operating Systems Concepts 75 Assist. Lecturer: Mustafa Sadiq
Chapter 12: Mass Storage Systems:

- Magnetic disks provide bulk of secondary storage of modern computers

- Drives rotate at 60 to 200 times per second

- Transfer rate is rate at which data flow between drive and computer

- Positioning time (random-access time) is time to move disk arm to desired cylinder

(seek time) and time for desired sector to rotate under the disk head (rotational

latency)

- Head crash results from disk head making contact with the disk surface, that’s bad

- Disks can be removable

- Drive attached to computer via I/O bus

- Busses vary, including EIDE, ATA, SATA, USB, Fiber Channel, SCSI

- Host controller in computer uses bus to talk to disk controller built into drive or

storage array

Disk Scheduling

The operating system is responsible for using hardware efficiently — for the disk drives, this

means having a fast access time and disk bandwidth. Access time has two major components

1- Seek time is the time for the disk are to move the heads to the cylinder

containing the desired sector

Operating Systems Concepts 76 Assist. Lecturer: Mustafa Sadiq
2- Rotational latency is the additional time waiting for the disk to rotate the

desired sector to the disk head

The aim of the disk scheduling algorithms is to Minimize seek time. Seek time  seek

distance

- Disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer

- Several algorithms exist to schedule the servicing of disk I/O requests, we illustrate

them with a request queue (0-199): 98, 183, 37, 122, 14, 124, 65, 67

- Head pointer currently on : 53

1- First come first served (FCFS): first request served first and so on:

2- Shortest Seek Time First (SSTF):

- Selects the request with the minimum seek time from the current head position

- SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests

- Illustration shows total head movement of 236 cylinders

Operating Systems Concepts 77 Assist. Lecturer: Mustafa Sadiq

3- SCAN algorithm: The disk arm starts at one end of the disk, and moves toward the

other end, servicing requests until it gets to the other end of the disk, where the head

movement is reversed and servicing continues. SCAN algorithm Sometimes called

the elevator algorithm. Illustration shows total head movement of 208 cylinders

4- Circular SCAN Algorithm: Provides a more uniform wait time than SCAN. The

head moves from one end of the disk to the other, servicing requests as it goes. When

it reaches the other end, however, it immediately returns to the beginning of the disk,

Operating Systems Concepts 78 Assist. Lecturer: Mustafa Sadiq
without servicing any requests on the return trip. Treats the cylinders as a circular list

that wraps around from the last cylinder to the first one

5- Circular LOOK Algorithm: Version of C-SCAN. Arm only goes as far as the last

request in each direction, then reverses direction immediately, without first going all

the way to the end of the disk

Operating Systems Concepts 79 Assist. Lecturer: Mustafa Sadiq
Chapter 14 Protection

Protection is the mechanism of controlling the access of programs, processes, or users to the

resources defined by the computer system. This mechanism must provide a means for

specifying the controls to be imposed and the means for enforcement.

Goals of protection:

- Operating system consists of a collection of objects, hardware or software

- Each object has a unique name and can be accessed through a well- defined set of

operations

- Protection problem -ensure that each object is accessed correctly and only by those

processes that are allowed to do so.

- Guiding principle –principle of least privilege which means that Programs, users and

systems should be given just enough privileges to perform their tasks.

Domain Structure

Each process work within a protection domain that specify the resources that process can

access and each domain defines a set of objects and the types of operations that can be

invoked on these objects.

The ability to execute an operation to an object is defined as:

Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be performed on the object.

And Domain = set of access-rights.

Access matrix:

Our model of protection can be viewed abstractly as a matrix called access matrix where the

rows of the matrix are the domains and the columns representing the objects. Each entry in

the matrix represent a set of access rights.

Access(i, j)is the set of operations that a process executing in Domaini can invoke on Objectj.

Operating Systems Concepts 80 Assist. Lecturer: Mustafa Sadiq

The use of the access matrix:

If a process in Domain Di tries to do “op” on object Oj, then “op” must be in the access

matrix

Also this can be expanded to dynamic protection where:

- there are Operations to add, delete access rights

- Special access rights:

- owner of Oi

- copy op from Oi to Oj

- control –Di can modify Dj access rights

- transfer –switch from domain Di to Dj

Access Control

As we see the access control of a file within a

file system can give the ability to use of deny

using a specific file. The same thing can be

applied on a non-file resources such as in the

Solaris 10 operating system provides role-

based access control (RBAC)to implement

least privilege. Privilege is right to execute

system call or use an option within a system

call. Can be assigned to processes. Users

assigned roles granting access to privileges

and programs.

Operating Systems Concepts 81 Assist. Lecturer: Mustafa Sadiq
Chapter 15: Security

Protection is strictly an internal problem whereas the security on the other hand requires not

only the protection of each computer system parts from one another but also must take the

external environment within which the system operates.

Intruders (crackers) attempt to breach security. Threat is potential security violation. Attack

is attempt to breach security. Attack can be accidental or malicious. Easier to protect against

accidental than malicious misuse.

Standard Security attacks:

Security measure levels: Security must occur at four levels to be effective Physical, Human,

Operating System, and Network. Security is as weak as the weakest chain.

Program Threats:

- Trojan Horse: is a Code segment that misuses its environment. Exploits mechanisms for

allowing programs written by users to be executed by other users. Spyware, pop-up

browser windows, covert channels

- Trap Door: Specific user identifier or password that circumvents normal security

procedures. Could be included in a compiler

Operating Systems Concepts 82 Assist. Lecturer: Mustafa Sadiq
- Logic Bomb: is a Program that initiates a security incident under certain circumstances

- Stack and Buffer Overflow: Exploits a bug in a program (overflow either the stack or

memory buffers).

Boot sector Computer Virus

System and Network Threats:

- Worms – use spawn mechanism; standalone program

- Internet worm: Exploited UNIX networking features (remote access) and bugs in finger

and sendmail programs. Grappling hook program uploaded main worm program

- Port scanning: Automated attempt to connect to a range of ports on one or a range of IP

addresses.

- Denial of Service: Overload the targeted computer preventing it from doing any useful

work. Distributed denial-of-service (DDOS) come from multiple sites at once.

